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Abstract. Giving importance to the active participation of wncenttntion fluctuations in the 
dynamics, a phenomenological model is proposed to describe the experimentally observed 
suppression of phase separation when a hrbulent binary fluid mixhlre is quenched below its 
comolute point T,. It is assumed that an inverse cascade of wncentration fluctuations is acted 
upon by the tubulence-generated viscous shear together with a loss due to the presence of 
Alfv6n-like waves, which cuts off the inverse cascade at some scale. As a consequence, The 
apparent depression of critical temparature follows the power law AT, - RA with I = I .44 and 
2.4 in two extreme theoretical limits (R = Reynolds number). This m u l l  is comparable to the 
experimental values of 1.4 and 2.1 in two different measurements. 

1. Introduction 

1.1. The experiment 

A few years ago, Pine et al 1141 observed that when a turbulent (randomly stirred) binary 
fluid mixture (3-methylpentane + nitroethane) is suddenly quenched below its consolute 
point (Tc = 26.4"C), the phase separation (which is usually observed in an unstirred 
mixture) is tremendously inhibited, showing no attenuation (and hence no scattering from 
any concentration fluctuations) of the laser beam (632.8 nm wavelength) transmitted through 
the turbulent mixture until the quenching temperature is low enough for the phase separation 
to show up through an attenuation of the transmitted laser beam. They identified the 
Reynolds number ( R )  dependent temperature, T,'(R), at which the transmitted intensity fell 
by 156, as the new (depressed) critical temperature of the turbulent system. Further, they 
observed that the depression AT, = Tc - T,'(R) obeys the power law 

AT, - RA (1) 
where A, presumably a universal number, was found to be equal to 2.1 and 1.4 in two 
different measurements. 

1.2. Expected physical processes 

The quenched randomly stirred mixture involves two simultaneous physical processes. First, 
since the mixture in the experiment is violently stirred at large scales, we expect the existence 
of the universal Kolmogorov (direct) self-similar cascade of energy [6, 12,ch 211 from 
larger to smaller (hydrodynamic) scales. Dimensional arguments suggest the corresponding 
spectrum to be 

(2) 
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the inverse timescale associated with this cascade being 

v(k)k2 Ell3 k213 (3) 
where 5 is the energy injection-rate at large scales (- L, say). This cascade is terminated 
at the Kolmogorov wavenumber kd = l/q, given by 

114 .=(I) =R3/4 (4) 

due to dissipation by viscosity, where ~0 is the kinematic viscosity of the fluid, and R is 
the macroscopic Reynolds number. In the experiment, L = 2.5 cm and R was varied in the 
range 6.0 x 10345 x lo4. 

The other physical process is the spinodal decomposition, which takes place at very small 
(thermodynamic) scales (where, as we shall see, the effect of the stirring can be neglected, 
the microscopic Reynolds number being too small at these scales), resulting from the Cahn- 
Hilliard instability [3,4] as a result of the quenching below T,. Concentration fluctuations 
grow in size in the initially homogeneous mixture, with maximum growth rate occurring at 
a wavenumber k,. The growth rate r ( k )  is related to the diffusivity 07 as 

r ( k )  % Dj- k2 (5) 
with 

DF % k e T / 6 r ? o P ( T )  (6) 
where qo is the molecular viscosity and the comelation length {(T) is given by 

Since one can assume [ I l l  k ,  1/((T), taking 5 = i,Q = 2.28 A, Tc = 26.4”C, and 
T, - T % 20 mK [14], equation (7) leads to k,,, % lo’ m-’. 

In section 2 we outline the various theories that attempted to find out the exponent A of 
equation (l), corresponding assumptions, and final results. In section 3 we set out our main 
observations, consequent assumptions, and the proposed phenomenological calculations. 

2. Previous theories 

A rough estimate of the exponent A from the above data has already been made by Pine et 
al 1141. It involves in assuming that the phase separation is inhibited when the timescale 
determined by the fypical viscous strain rate S(kJ = uoki matches the m i m u m  growth 
rate r (k , )  = DT k i  at T = TL(R), i.e. DT k i  x vo k i .  Using (6). (4), and k,  = l/e, one 
obtains R3/* - l/e3(T:), which upon using (7) leads to Tc - T,’(R) - R 1 / 2 G .  Taking C = 1 
gives the value A = l/2C = 0.8. This value is much less than the experimental value (- 2). 

Onuki [I31 goes a little further in estimating 1 by assuming that the turbulent velocity 
field in the dissipation range k > &d can be expanded 121 as a Taylor expansion in space, and 
assuming the coefficient of the linear term behaving like a white noise [9,10]. His theory, 
however, introduces no major improvement over the above value, yielding A = 0.9-1 .O. 

Aronovitz and Nelson [I] also have put forward a model of the above suppression of 
phase separation, assuming the mixture to behave like a passive mixture. By carrying out 
a linear stability analysis, they found a depression of the critical temperature T, in the 
presence of stirring. 
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Satten and Ronis [I61 also assumes the mixture to be passive. Neglecting the non- 
linearities (associated with both the self-advection of the velocity field, i.e. ( U .  V)u.  and 
active participation of concentration gradients, i.e. Vg Vzg) in the dynamics of the velocity 
field (cf equation (8)). they carried out a renormalization group (RG) calculation leading 
to a new fixed point, and a value A = 1.74. This value is in close agreement with the 
experimental value (- 2). 

The assumption of a passive dynamics in the above RG approach is, however, quite 
contrary to what Ruiz and Nelson [IS] had already argued, namely, the active participation 
of concentration fluctuations cannof be ignored at small scales. It is to be noted that the 
relevant physical processes, under the experimental conditions, are confined to the large 
wavenumber range kd c k 4 k,. Therefore, in the dynamics of the velocity field, although 
the advective non-linearity (?A. 0)u is not important in this (viscous) range, the term due 
to active participation, Vg VZg), having three space derivatives, does become important in 
this small-scale regime. Further, the RG formulation had the difficulty that the Reynolds 
number in the scaling relation AT, - RA (equation (1)) is not directly obtainable. 

3. Proposed model 

Here we show that a simple phenomenological model, based on the pictures provided by 
Ruiz and Nelson [IS], can be used to calculate the value of the exponent A in (I), in 
reasonable agreement with the experiment. We set out our observations and consequent 
assumptions in subsection 3.1, while the calculations will be presented in later subsections. 

3.1, Observations and assumptions 

From the calculations following (4) and (7), we see that there is enough room to allow 
for many physical processes between the wavenumbers kd - 10' m-' and k,  - lo' m-'. 
Further, the wavelength of the laser light used in the experiment was A = 632.8 nm, giving 
a probing wavenumber K = A-' - lo6 m-' , which lies between kd and k,. At a quenching 
temperature, T = T,'(R), negligible attenuation (by 15%) of the transmitted laser beam was 
observed. Thus, as suggested by Pine er al [14], we assume that any phase separation is 
confined to the wavenumbers larger than K .  Since K > kd, the phase separation is confined 
only in the dissipation range (k > kd). 

Further, the microscopic Reynolds number at the dissipation wavenumber should be 
R(kd) 1 (by definition), and k ,  W 10zkd (in the experiment). Since R(k)  - k-', this 
leads to a very small value of the microscopic Reynolds number at the spinodal wavenumber, 
namely R(km) % lo-'. Therefore, one can safely neglect any effects of the stirring in the 
dynamics of spinodal decomposition, which takes place at and above wavenumbers - k,. 
Consequently, we assume that the near-equilibrium dynamics of spinodal decomposition [SI 
is still valid at and above wavenumbers - k,, i.e. in the mechanism responsible for 
production of concentration fluctuations. 

In addition, we take a simple picture of the physical processes leading to the suppression 
of phase separation ink < k,,, based on the ideas put forward by Ruiz and Nelson [15]. The 
spinodal decomposition injects, as Ruiz and Nelson had already suggested, concentration 
fluctuations at wavenumbers k, (at the maximum rate). This is an ideal condition [I51 to 
support an inverse cascade of concentration fluctuations in k < k,. This cascade is possible 
only in an active binary liquid [IS]. Since at T = T,'(R), as indicated earlier, the phase 
separation takes place only above the laser wavenumber K, we shall assume that the cascade 
is stopped at K by the turbulence-generated viscous shear. Dissipation of the concentration 



3008 M K Nandy 

fluctuations takes place through conversion (due to the presence of Alfvdn-like waves) of 
concentration gradients into velocity fluctuations and its subsequent dissipation by viscosity. 
This dissipation, together uith the production at k,, maintains a steady state. 

Further, this phenomenological model does not have any difficulty in finding the required 
dependence on the Reynolds number R, because it in fact makes use of (4) to find the 
required dependence. 

3.2. Active dynamics and phenomenology 

The dynamics of a symmelric binary fluid, as Ruiz and Nelson 115, section VI] suggest, is 
governed by the following equations: 

au VP' - + xo (U. V ) u  = -- -(Yo V@ 024 + "0 vzu + f 
at Po 

along with the condition for incompressibility V .U = 0, and 

where ro is a positive transport coefficient. f(z, f )  and <(z, t )  are random stirring fields 
acting on the velocity field u(z, t )  and the scalar field $(z, t )  = [PA(%. t ) -ps (z ,  t)l/po; po 
is the mean density of the binary fluid composed of the two constituents A and B. The extra 
term in the Navier-Stokes equation signifies an active participation [ 151 of concentration 
gradients in the dynamics of the velocity field. Several terms are included in the effective 
pressure I". 

In the case of two-dimensional pure hydrodynamics, Kraichnan [8] argued about the 
direction of the cascades by looking at the absolute equilibrium ensemble associated with 
the two inviscid conservation laws; namely the total energy and the total enstrophy. Similar 
arguments can be applied to the present case, as Ruiz and Nelson discuss, since the 
symmetric binary fluid involves two conserved quantities in absolute equilibrium [15], for 
zero transport coeffiCients. and in the absence of any extemal stirring: 

The canonical probability distribution is now given by 

Equipartition among the modes requires 

1 1 (IUklZ) = - B 
and 
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Thus, just as in the three-dimensional pure hydrodynamic case, the energy cascade is 
expected to be direct. The second equipartition relation, on the other hand, suggests that 
there is a possibility of inverse cascade of the scalar-variance [15] corresponding to the 
possibility of negative ‘temperature’ solutions; the interpretation goes exactly as that in the 
absolute equilibrium of two-dimensional pure hydrodynamics. 

Ruiz and Nelson also discuss about the instability associated with a phase-separating 
(T  < T,) binary mixture [ 15, section VI]. Since r 0: (T  - Tc), upon quenching the turbulent 
homogeneous mixture below Tc, the diffusion constant Do = ror becomes negative, 
and Cahn-Hilliard instability sets in [3,4]. This instabillity starts to produce small-scale 
inhomogeneities (droplets) in the mixture, with a maximum growth rate occurring at a 
wavenumber k,. As pointed out in subsection 3.1, since the microscale Reynolds number 
at k, is only - lo-’, and therefore we can safely neglect any effects of the random stimng in 
this instability, indicating that the near-equilibrium dynamics [5] of spinodal decomposition 
is still valid in this regime (k > k,). 

Further, Ruiz and Nelson argued that the above instability injects concentration 
fluctuations at scales - k;’, which is an ideal condition for an inverse cascade larger scales 
(i.e. at k < k,) [15,section vr]. Simple dimensional arguments yield the corresponding 
specmm easily. Taking or0 to be dimensionless makes [U] = [Ob]. Since 

we have [C(k ) ]  = [L’T-’] and [ j ]  = [ L 4 T 3 ] ,  where j is the injection rate 
of scalar-variance at small scales (large wavenumbers). Quite like the Kolmogorov 
phenomenology [61. we assume that C(k) may depend only on j and k. Thus writing 
C(k) - j“ka, we get 4or - p = 5 and 3or = 2. This yields 

C(k) Y p i3k-7 i3 ,  (13) 

The inverse timescale 

D(k)k’ - j’/3k413. (14) 

can also be obtained by similar dimensional arguments. @uiz and Nelson’s EDQNM closure 
supports the above scaling relations, in that they give a k-independent flux for the cascade.) 

3.3. Results 

The phenomena discussed above suggest that there must be a crossover from the spinodal 
(thermodynamic) to the inverse cascade (hydrodynamic) regime at some scale. It is 
reasonable to take this scale as k;’, at which the concenmtion fluctuations are injected, At 
this scale, the growth rate must match the turnover rate, i.e. 

r ( k d  M D(kd  e. (15) 

Using equations (5) and (14), this yields f - DSkk,  which, using (6) and taking 
k, m l / t ( T ) ,  finally yields the injection rate as 

j ( T )  - (Tc - 7-p. (16) 

where the last step follows from (7). 
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3.3.1. Non-dissipative picture. As noted earlier, all the processes in the experiment (due 
to phase separation) are confined in the dissipation regime (k > kd). Therefore, the inverse 
cascade is acted upon by the turbulence-generated viscous shear, with a typical strain rate 
S(kd) N voki. Thus this cascade will be stopped when the inverse timescale of the backward 
cascade matches the strain rate, i.e. 

(17) 2 D ( k )  k2 m uokd 

which, using (14). leads to 
[j(T)1'/3k4/3 * w k d .  2 

In the experiment, a new (Reynolds-number-dependent) depressed critical temperature T,'(R) 
is defined at which phase separation is observed to begin (through a 15% attenuation of the 
transmitted laser beam). Therefore, assuming that the inverse cascade reaches only down 
to the laser wavenumber K, we must have 

[T(T()]'/3 K413 ir. w k z .  

Using (16) and (4), equation (19) leads to 

ATc = T, - T:(R) - R9/'OC (20) 

A =9/1OC = 1.44 (21) 

giving a value 

for c = 2 
In the above picture. the Concentration fluctuations are produced at the wavenumber k,, 

which then cascade down to the wavenumber K where the viscous strain stops the cascade. 
Thus there is no dissipation mechanism acting on the cascade and hence no steady state 
will be reached. Instead, concentration fluctuations will grow in the band K < k km. In 
this sense, the above calculations have been performed in an extreme theoretical limit. 

3.3.2. Srendy-state picture. In order to maintain a steady state, the concentration 
fluctuations must be dissipated at the rate at which they are produced at k,. Ruiz and 
Nelson's arguments 1151 suggest that an indirect mechanism of dissipation can become 
operative in the above inverse cascade as discussed below. 

Supposing the inverse cascade reaches a wavenumber K', the buildup of concentration 
gradient B(k)  = at a wavenumber k ,  due to the presence of fluctuations from K' 
to k ,  is given by 

8 '  

Using (13). we observe that the integral in (22) is dominated by the upper limit, and 
assuming K' << k ,  we obtain B ( k )  - ?'I3 k'I3. 

Now, this concentration gradient is capable of supporting Alfvh-like waves at k, with 
frequency w ( k )  = B ( k )  k - k413. Since this frequency scales the same way as the 
inverse timescale D(k)  k2 (cf equation (14)), wave effects are important at every step of the 
inverse cascade. 

This wave effect brings the concentration gradient modes and the velocity modes into 
energy-equipartition 17,151. (Ruiz and Nelson's simulation in fact indicated the existence 
of the equipartition due to the Alfv6n waves in the inverse cascade regime of a miscible 
binary fluid on the basis of an EDQNM closure, cf L15,figure 141.) Therefore, at every step of 
the cascade, some amount of concentration gradient is converted into velocity mode, which 
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is then dissipated by the action of viscosity, because all the above processes are confined 
in the dissipation regime (in the experiment). 

The rate of conversion of concentration gradients into kinetlc energy at a wavenumber 
k is given by 1151 

which, using (22) and (13), yields w-(k) - j 2 / 3  k2I3/vo. 
This indirect mechanism of dissipation must show up as an attenuation of the flux 

j at each step, as the cascade proceeds downward in wavenumber. At every step, f 
is attenuated by a factor (1 - f). where f = w-(k)/vok2. However, a fractal model 
involving such step-by-step dissipation, coupled with the steady-state condition, gives rise 
to complicated equations from which it is practically impossible to extract any information. 
The complication arises from the fact that ~ ( k )  is determined by B(k) which, in turn, is 
determined by C ( k ) .  

However, we take a simplified picture of the steady state, in which the above dissipation 
mechanism is assumed to be important only in a range k' < k < k,  and no dissipation in 
K < k < k*. The production rate ,f must match the conversion rate, i.e. 

j x /"*& o - ( k ) C ( k )  dk (24 

which, for the scaling C ( k )  - k-7/3, is dominated by the lower limit. This suggests that 
we replace ,f by p when we use (13) in (24), where 7 is the attenuated value of the flux 
at k". Using (23), (22) and (13) with j replaced by 2, we get 

This simplified picture is equivalent to assuming that the conversion, and hence the 
dissipation, is concentrated at the wavenumber k" because of the dominance of the lower 
limit. In this sense, this simplification is another extreme theoretical limit. Further. to 
maintain the steady state, the conversion rate o- (k*)  must be equal to that with the 
dissipation, i.e. 

(26) w-(k*) % wokd. 2 

pi3 k -  . Z P  / V o - V O k d .  2 

Using (23), (22) and (13) with j replaced by 7, this yields 

(27) 

(28) 

Eliminating k' from (25) and (27), we get 
312 - - 

X*(T) - VO [X(T)l"zkd. 
In the range K c k < k', the inverse cascade continues with the flux 7 and is stopped 

at the wavenumber K (when T = TL(R)), where the inverse timescale matches the strain 
rate: 

(29) D ( K ) K 2 m v o k d .  2 

Using (14) with f replaced by p, this yields 
[ T ( T 3 ' l 3  K4I3 wok,. 2 

which, using (28). gives 

j (TL) - kAo 
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which, upon using (16) and (4), finally reduces to 

AT, = Tc - T,'(R) R3'*'. 

This gives the value 

h = 3/25 = 2.4 (33) 
5 for b = 3. 

Thus, as a result of our calculations, we get the value of the exponent h to be 1.44 and 
2.4 from (20) and (32). respectively. 

4. Conclusion 

In the model proposed, we began with the observation that the microscopic Reynolds 
number at scales k;' is only - lo-', which allowed us to neglect any effects of the 
random stirring in the production mechanism of concentration fluctuations through the 
Cahn-Hilliard instability. Further, following Ruiz and Nelson's arguments, we considered 
the active coupling term in (9) to be of importance in the dynamics of small scales. This term 
supports an inverse cascade in the hydrodynamic regime (k c km). This term also supports 
Alfvkn-like waves, which converts concentration gradients into velocity fluctutations which 
undergo subsequent dissipation by viscosity, since all the processes take place in the viscous 
range ( k  > kd) in the experimental conditions. Since the Reynolds number R determines 
the viscous cutoff k d ,  we could relate the depression AT, to R without any difficulty. In one 
extreme limit, when we assumed no dissipation, we obtained 1 = 1.44. In the other extreme 
limit, when we assumed all the dissipation is concentrated at a wavenumber determined 
by the steady-state condition, we obtained h = 2.4. The latter value should be regarded as 
more close to the realistic situation, because the steady-state condition has been taken into 
account i n  obtaining this result. Thus the assumption of active participation of concentration 
gradients in the dynamics of the velocity field leads to reasonably good agreement with the 
experimental result. 

Since we have considered only the above two theoretical extremes, it would be 
interesting to find a way of calculating the exponent without making such theoretical 
assumptions for the intermediate case, as well as finding out how the result may depend 
on any experimental parameter. The only way to do so seems to be by means of a fractal 
model which takes account of the dissipation of the concentration gradient fluctuations by 
the Alfvknic equipartition ut ever). step of the backward cascade, as well as by properly 
taking the balance between the production and dissipation processes into account. Such 
a fractal model would involve the viscosity (an experimental parameter) in the equations, 
because of the presence of the attenuation factor (1 - f )  (shown following equation (23)). 
As the calculations presented in this work are only two extremes, such a fractal model is 
expected to yield a number between 1.44 and 2.4, with, presumably, weak dependence on 
viscosity. 

Acknowledgments 

The author wishes to thank Professor J K Bhattacharjee of the Department of Physics, 
Indian Institute of Technology, Kanpur, for various discussions and suggestions, and for 
careful reading of the manuscript. A part of thii work has been supported by the project 
DSTPIiYB 154. 



Suppression of phase separation in binary liquids 3013 

References 

[I] Aronovim J A and Nelson D R I984 Phys. Rev. A 29 2012 
[2] Batchelor G K 1959 J. FIuid Meck. 5 113 
[3] Cahn J W 1961 Acm MetulL 9 795; 1962 10 179 
[4] Hilliard 1 E 1970 P h e  7rMfomlions ed H I Aronson (Cleveland, O H  American Society for Metals) 
[SI Hohenberg P C and Halperin B I 1977 Rev. Mod. Phys. 49 435 and references therein 
[61 Kolmogorov A N 1941 C. R. Acad Sci. URSS 30 301 
[7] Kraichnan R H 1965 Phys. Flvidr 8 I385 
[8] Kraichnan R H 1967 Phys. FIuidr 10 1417 
191 Kraichnan R H 1968 Phys. Fluids 11 945 
[IO] Kraichnan R H 1974 J. W i d  Meek  64 737 
[ I l l  Langer 1 S 1975 Fluduationr. Inrfnbilities, and Phare Trmitionr ed T Riste M e w  York Plenum) 
[12] Monin A S and Yaglom A M 1971 Slolislical Fluid Mechnnics vol 2 (Cambridge, MA: MIT mas) 
1131 Onuki A 1984 Phys. Len. lOlA 286 
[I41 Pine D I. Easwar N, Maher J V and Goldburg W I 1984 Phys. Rev. A 29 308 
[I51 Ruiz R and Nelson D R 1981 Phys. Rev. A 23 3224 
[I61 Satten G and Ronis D 1986 Phys. Rev. A 33 3415 


